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On the instability theory of the melted surface of an 
ablating body when entering the atmosphere 

By SAUL FELDMAN 
AVCO Research Laboratory, Everett, Massachusetts 

(Received 22 September 1958) 

Some ablating bodies entering the atmosphere will melt or soften. Under de- 
celeration, the soft or melted surface will tend to develop instabilities of the 
Lamb-Taylor type. Two situations involving viscous incompressible fluids are 
investigated here: one where the liquid layer has constant viscosity and finite 
thickness, and the other, where the viscosity increases exponentially with 
distance away from the interface, and the layer is semi-infinite in extent. 

It can be demonstrated, that if one neglects gradients in the flow direction, the 
rate of growth of interface disturbances in a plane normal to the axis of an axially 
symmetric blunt body is independent of the flow velocity. The fact that the 
deceleration and liquid thickness vary with time along a trajectory is also included 
in the analysis. Results of calculations for the amplification factor and the most 
amplified wavelength are given. 

A mechanism due to the deceleration is postulated, which would cause the 
formation of longitudinal grooves on the surface of an axially symmetric blunt 
body while entering the atmosphere. 

1. Introduction 
The possibility of travelling through the Earth’s atmosphere at hypersonic 

speeds has led to the study of heat transfer of ablating objects. Such ablation 
occurs as a result of the high heat transfer rates encountered in hypersonic flight. 
Here, the flight time through the atmosphere is short, and in practical applications 
only part of a properly designed payload envelope will melt or vaporize. An 
example of some ‘good designs’ may be seen in plate 1, figure 1 where several 
stone meteorites that survived the atmospheric journey are shown. 

According to their chemical composition meteorites can be classified into irons 
and stones. Typical elements found in an iron are Fe 91 yo and Ni 9 %, by mass, 
while in stones they find 0,36 yo, Fe 26 yo, Si 18 yo, Mg 14 %. Since SiO,, which 
makes up more than half of the mass of stone meteorites, does not have a definite 
melting point, stone under re-entry conditions will probably just soften, while 
irons, on the other hand, will melt. 

The attractiveness of using an ablating surface as a heat shield resides in the 
possibility of vaporizing the soft or melted material. (The problem treated here 
does not arise in cases where the solid material sublimes.) If the vaporization 
and melting temperatures differ appreciably, as they do in most substances, 
the melt must be sufficiently viscous so that it can be heated to the vaporization 
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temperature before it is swept off the body: thus, the benefit of vaporization will 
have been realized. 

There are two principal mechanisms which may lead to loss of the melted 
material before deriving the benefit of its evaporation. One is that the liquid, for 
sufficiently high liquid Reynolds number &plh/h  (where denotes the gas- 
liquid interface velocity, F, the liquid layer thickness, and pt and ,L,+ denote liquid 
density and viscosity respectively), could develop instabilities that would lead 
to liquid entrainment by the gas stream. Due to viscous effects and (or) Helm- 
holtz instability, energy is fed from the main gas stream into the disturbed liquid. 
The other mechanism is provided by body forces due to deceleration normal to the 
gas-liquid interface. The softened surface will always have some small-amplitude 
corrugations at the liquid-gas interface which, under the high deceleration forces 
normal to the liquid film encountered during re-entry, will amplify and lead to 
liquid loss. This phenomenon will probably be most important at low liquid 
Reynolds numbers and in the neighbourhood of the stagnation region of blunt 
bodies, where the deceleration normal to the body is highest. The component of 
deceleration parallel to the body only causes a change in the liquid film velocity 
profile. 

A high performance heat shield should avoid or minimize liquid loss due to 
hydrodynamic instability. The rate of growth of some of these instabilities is 
investigated here. 

Consider the flow about a melting or softening blunt body at zero angle of 
attack (figure 2). If the radii of curvature are large compared with the liquid 
layer thickness, a two-dimensional treatment of the problem will be satisfactory. 
There are two main types of disturbances that have to be investigated: distur- 
bances propagating in the stream direction-in the (jp)-plane-and disturbances 
across the stream in the (?@-plane. Since we are concerned with an efficient heat 
shield, we will assume that very little material is lost due to hydrodynamic 
instability during the flight time through the atmosphere, and therefore that the 
amplification rates must be sufficiently small so that the linear treatment cor- 
rectly describes the interesting part of the phenomenon. This assumption will 
have to be checked a posteriori. 

The treatment of disturbances propagating in the (@)-plane are the subject of 
the hydrodynamic stability theory of two fluids with body forces normal to the 
interface. Feldman (1957) treated the problem of the hydrodynamic stability of 
two fluids with the velocity profile shown in figure 3; the liquid Reynolds numbers 
were assumed large, and the body forces acted normal to the wall, but in either 
direction. He found that when the body force was directed towards the wall the 
flow was destabilized, which seems to disagree with what one would expect 
intuitively. It was shown that in that problem, gravity-when acting towarda 
the wall-and surface tension produce a Reynolds stress that fee& energy into 
the disturbance in the case of high liquid Reynolds numbers. In  practical 
applications, however, the liquid Reynolds numbers will be small, and the abcve- 
described mechanism will be inoperative; the important destabilizing factor will 
be the body forces caused by deceleration normal to the gas-liquid interface. 
Therefore, in this case the velocities in the steady flow (figure 3) can be neglected, 
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and the problem reduces to one of the type that Lamb (1932) and Taylor (1950) 
have already investigated. 

In  other words, in the aR-plane (commonly used for presenting hydrodynamic 
stability results) a t  a given wave number, the liquid film is Lamb-Taylor 
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FIGURE 2. Flow about a melting blunt body. 

Y 

Direction of gravity 

Wall 
FIGURE 3. Velocity profile investigated by Feldmctn (1957). y, = 0;  yz = 1 ;  ys = 00. 

unstable when the liquid Reynolds number is zero (i.e. no flow). At some small 
liquid flow rate the film becomes stabilized, and if the flow rate is increased 
sufficiently, the usual hydrodynamic instability sets in where the body forces 
away from the solid wall are unimportant compared to shear forces. 

We have experimental evidence (to be published elsewhere) that a small 
amount of gas flow can stabilize Lamb-Taylor instability. The exper'lment 
consisted of a horizontal flat plate with a film of silicone in the underface, which 
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could be inserted into a horizontal air jet. With no gas flow the film would 
develop the usual Lamb-Taylor columns. At small air flow the spikes would be 
blown into the gas stream and carried away by it (liquid still unstable). As the 
gas flow is increased, the columns disappear and instead transverse waves appear 
of the same wavelength as the columns: these waves seem to be damped since they 
do not lead to any fluid loss. If the gas flow is increased further, a condition is 
reached such that the liquid film becomes unstable: liquid blows off the crests of 
the waves due to the usual high Reynolds number hydrodynamic instability. 

The waves that develop as a result of gravity in the liquid film on the underside 
of an inclined flat plate (' tea-pot ' effect) without any gas flow have been shown by 
Benjamin (1957) to be always unstable. This, however, is not our case when away 
from the stagnation point of a blunt body, where the shear forces at  the gas-liquid 
interface are far more important than the body forces in determining the liquid 
velocity profile. 

We will therefore assume that in cases of interest, the liquid Reynolds number 
will be either sufficiently larger than zero, and smaller than the usual critical 
Reynolds number, so that the disturbances propagating in the (gZ)-plane are 
stable, or sufficiently close to zero so that the amplification rate of Lamb-Taylor 
instability gives an upper limit to the growth rate of disturbances that appear 
when the liquid flow rate, due to gas-liquid interface shear, is small. 

We turn next to investigate the disturbances in the (Zy)-plane. The hydro- 
dynamic instability of the flow to  small two-dimensional disturbances developing 
in the (@-plane (figure 2 )  is investigated theoretically in this paper. As will be 
pointed out in $2.1, it  is evident that if all z-variations are neglected the instability 
of this flow is completely independent of the velocity profiles W(ij)-in the 
(2)-direction-of the liquid or gas, and it reduces to the Lamb-Taylor instability 
problem. Of course, the shape of the perturbed streamlines are a function of W(3) 

The initial stages of the Lamb-Taylor instability problem have been treated 
theoretically in the literature by small perturbation techniques up to the third- 
order approximation. Experiments have also been carried out in order to check 
the theories. We will now briefly review the work done on the initial stages of 
instability. 

Lamb (1932, p. 371) pointed out the unstable behaviour of the interface of two 
semi-infinite inviscid incompressible fluids in a gravitational field normal to their 
interface, when perturbed by a small oscillation. His results indicate that when 
the body force acts from the heavier to the lighter fluid the disturbances grow 
exponentially in time f, i.e. the ratio of the amplitude 7 at any time to the original 
amplitude T~ is given by 

where 12 is the amplification exponent. Lamb also pointed out that the effect of 
surface tension was to stabilize the motion for wavelengths shorter than a cut-off 
wavelength Xco, given by 

s(m - P,) 

where (T is the interfacial surface tension coefficient, g is the acceleration per- 
pendicular to the interface, and the subscripts g and I denote quantities evaluated 
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for the gas or liquid; the bar denotes dimensional quantities. The wavelength for 
which the amplification factor ?i is a maximum is called the critical wavelength &, 
and will be denoted by EC. 

The result obtained by Lamb for T i ,  neglecting surface tension, was 

Taylor (1 950), neglecting surface tension, extended the investigation to include 
the case where the denser fluid was of finite thickness and the second free surface, 
although initially flat and stable, was free to distort. 

Bellman & Pennington (1954) included viscosity and surface tension in their 
analysis of two semi-infinite fluids. They found that viscosity had the effect of 
diminishing the amplification rate Ti, but could never by itself make it go to zero 
for any finite wavelengths. Their calculations have been extended and recast in 
a more convenient form in 3 4. 

Chang (1958), by carrying the small disturbance theory to the third order in 
the amplitude to wavelength ratio, investigated the inviscid problem of one 
semi-infinite fluid with a free surface in the initial stages of non-linearity. He 
found a theoretical explanation for an interesting effect due to surface tension, 
which had been previously observed by Watson (1957), and had been called 
‘overstability ’. Although from Lamb’s analysis waves shorter than the cut-off 
wavelength Xco are fully stabilized by surface tension (i.e. only oscillatory motion 
is possible), Watson found experimentally that these waves will oscillate and at 
the same time grow in amplitude. When including non-linear effects in the theory, 
Chang found that for X < Xco 

cv fri7 sin 7, 

where 

and f is a function X c o / X .  For X > X,,, he checked the result given by (3), and when 
X = Xco he showed that 7 N q p .  
Summarizing, the two essential points in Chang’s results are: (1) when the 
non-linear effects become important, surface tension does not stabilize short 
wavelengths, although it diminishes their rate of growth; and (2) the critical or 
maximum rate of growth of disturbances is adequately given by the linear theory 
that includes surface tension. 

Experiments designed to check the linear inviscid theory have been carried out 
by Lewis (1950), Allred, Blount & Miller (1954), and by Watson (1957). The 
experimental values of ifi agree within a factor of 1.5, or less, with the theoretical 
values. Watson found that the agreement of the experimental with the theoretical 
values of Tic, at the critical wavelength Xc, was within 10 %. 

Except for Taylor’s inviscid finite-thickness layer with two free surfaces, the 
cases that have been treated in the literature thus far, concerning the Lamb- 
Taylor instability, involve two fluids of semi-infinite depth and constant viscosity. 
The cases encountered during re-entry have only one free interface and when the 
material has a definite melting temperature-like the metals-the liquid has 
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a finite thickness or, in the case of glasses, the surface softens as the temperature 
rises. 

The rapid increase of viscosity with distance into the solid, or the finite thick- 
ness of a molten layer, may reduce its instability to an unimportant problem in 
the case of certain materials for specific applications. In  effect, Chang (1956) has 
shown that for an inviscid liquid layer of depth h in a vacuum, 

Ti N [tanh (27~h/X)]*, (6) 

which shows the stabilizing effect of small liquid depths. 

2. Instability of a semi-infinite viscous incompressible fluid with an 
exponential viscosity law 

2.1. Formulation of the problem 
The instability problem of the axisymmetric softened surface of figure 2 will be 
approximated by the two-dimensional problem represented in figure 4. Let W(y) 
denote the undisturbed velocity profile. All gradients in the flow direction Z will 

P' 

FIGURE 4. Co-ordinate system used in instability calculations. 

be neglected. The deceleration causes a body force p g ,  normal to the interface and 
directed from the liquid to the gas. The gas and liquid densities p g  and pl, and gas 
viscosity pg, will be assumed constant. The liquid viscosity will be taken as 

f i  = p$ e-W, ( 7 )  

where < 0 for the liquid, and the subscript i indicates a quantity evaluated a t  
the gas-liquid interface. The viscosity law ( 7 )  is a good approximation to the 
behaviour of glassy materials. Specifically, the viscosity of Pyrex during re-entry 
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heating, was obtained in the interface region (figure 5) from Sutton's (1958) 
calculations for the temperature distribution through the softening surface. One 
other justification for using the exponential variation is that i t  simplifies the 
analysis considerably. 

0 001 002 003 
Distance away from air-Pyrex interface y (mm) 

FIGURE 5. Viscosity of Pyrex as a function of distance away from air-Pyrex interface. 
Interface temperature 4000°F. Source of data: Sutton (1958). a, Obtained by using 

Sutton's (1958) calculation for the temperature distribution and p = exp 

poises; Ti = 4460 O R ;  pi = 18.5 poises. b, Exponential approximation. 

The relevant dimensionless equations of motion, including body forces in the 
y-direction, and continuity for an incompressible fluid of variable viscosity, in 
which the gradients in the z-direction have been neglected, are 

au au au 

au av 
ax ay  -+- = 0, 

where the subscript I has been deleted and 

(11) 

u = u p ,  v = qu, 
x = 516, y = yp, z = 216, t = iup, 
u = .J(gS) ,  % = pU6/p", p = F/pUZ. 
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Here u and v are the velocities in the direction of the coordinate axes x and y ,  
I, is pressure, g is the acceleration normal to the interface, p* is the viscosity and 
8 is defined by (7).  Two further equations could be written down, the equation of 
motion for the z-direction and an equation for the temperature distribution, but 
these turn out not to be relevant to the present analysis. The quantities pJ and 
6 depend on temperature, of course, but are assumed to be known. Note that 
equations (S), (9) and (10) do not involve the z-component of velocity, which fact 
is obviously to be expected as a consequence of our neglect of z-variations. 

It will be assumed that the dependent variables can be expanded as 

u = €W)(Z, y ,  t ) ,  v = € j d q X ,  y ,  t ) ,  p" = p ( y )  + ,jp(j)(,, y ,  t ) ,  
p = P ( y ) + € y j ' ( x ,  y , t )  (j  = 1,2,3,  ...), 

where E is a small parameter in the problem yet not determined, and the notation 
of tensor summation has been used. 

Inserting (12) an'd (7) into (8), (9) and (lo),  and equating coefficients of the first 
power of B, gives for the first approximation of the disturbed motion 

(13) at 
aV(u ap(i) 1 azv(i) azv(i) d(Rco))-i av(i) 
-- at - -__ ay +-(-+-j+2-- R ( o ) ( ~ )  ax2 aya aY aY ' (14) 

where B(0) = p U6/p(  y )  . (16) 

Equations (13)) (14) and (15) form a system for the three unknowns, dl), dl) 
andp(l). Since the system does not contain W ( y ) ,  the motion in the (xy)-plane and 
the solution of the stability problem are independent of the cross velocity W ( y ) ,  
regardless of the viscosity law that is used. 

2.2. Boundary conditions. Derivation of the disturbance equation 
In  order to simplify the calculation, we will replace the gas (figure 4) by a 
vacuum, i.e. p g  = 0. Equation (3) shows that this is a very good approximation. 
Therefore, all quantities in the analysis from here on will refer to the behaviour 
of the liquid. 

The boundary conditions applicable to (13), (14) and (15) will be written in 
dimensionless form. At the interface ( y  = yi), the tangential stress vanishes, i.e. 

au(u av(i) 
- +-- = 0, ay ax 

and the normal stress is in equilibrium with the surface tension; thus, 
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where the subscript i denotes interface, and R and W are the interface Reynolds 
and Weber numbers given by 

R = pgh33/,ui and W = gS2p/c, (19) 

where cr is the surface tension coefficient. 
As y + - co, the disturbance must vanish, i.e. 

w(1) = 0, @) = 0. (20) 
Let denote the vorticity of the perturbed flow, i.e. 

Differentiating (14) and (13) with respect to x and y ,  respectively, subtracting the 
second result from the first, and using (22), it follows that 

The equation of continuity assures the existence of a stream function $such that 

dl) = +y and dl) = - (24) 

the subscripts denoting partial derivatives. We now choose as the representation 
of the disturbance stream function 

@ = @(y)  eias+nf, (25) 

a = 2n/h = 2nS/X, n = ;FI J(S/g). (26) 

where the wave-number a and the amplification exponent n are given by 

From (24) and (25), the disturbance velocities and the vorticity can be written as 

If we write dldy = D, V2c becomes 
V2(; = - ( 0 2  - a 2 ) 2  @ eiax+n€ 

which, together with (7) and (16), can be inserted into (23) to yield 

( [ (D - 1)2 - a2] (D2 - a2) + 2a2} CP = nR eu(D2 - a2) CP, (29) 
where R is given by (19). Note that the right-hand member of (29) is proportional 

The boundary conditions on @ in (29) will now be obtained from (17), (18) and 

At the interface, for small slopes, 

to agat. 

(20). We will first express a2y(il)/ax2 and p(l)  that appear in (18). 
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The shape of the interface may be expressed as 
y$V = Qieia t+d 

where yi is the complex amplitude. Insertion of (31)  into (30)  gives 

and 

In order to determine p(l), let 
pC1) = $(y) &ax+&, 

(32)  

(33)  

(34)  

which, together with (27) ,  can be inserted into (13)  to yield, when evaluated at 
the disturbed interface yi, 

i 
aR $ = - -[@,""(0)-@"(0)-(nR+a2)@'(0)-a2@(0)]. (35)  

We have thus managed to integrate the (2)-momentum equation of O(E)  in order 
to obtain p(I). There still may be lacking a constant of integration. I n  effect, 
integration with respect to y of the complete equation given by (9) ,  would yield, 
at the disturbed interface yi a term of O(s) which comes from the term of O(1).  
This additional term is precisely yi, which from (32)  is 

From (34) ,  (35)  and (36),  p(l) a t  the interface is 

When inserting (27),  (33)  and (37)  into (17) ,  (18)  and ( Z O ) ,  these become at y = 0 

@" + a2@ = 0, (38)  

@"'-@' ' - (nR+3a2)@'+~2 - 1-- - 1  @ = 0. [3 3 1 
Inserting (38)  into the last expression gives 

n 

At y = -a, we have @ = 0 and @'= 0. 

2.3. Solution of the disturbance equation for nR B 1 
For nR > 1, (29 )  reduces to the inviscid case. Since the fourth-order equation 
reduces to one of second order, two of the boundary conditions cannot be re- 
tained; i.e. (38)  and the second of (40).  The eigenvalue for n then reduces to 
(80) below. 
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2.4. Xolution of the disturbance equation for nR < 1 
The disturbance equation (29) whose boundary conditions are given by (38), 
(39) and (40), will now be solved. We will assume that nR < 1 and expand @ in 
a power series in nR, i.e. 

W 

@ = z (nR)k@(k). (41) 
k=O 

Physically, nR < 1 means that the amplification exponent T i  satisfies 

Pi E < - .  
PS2 

The correctness of the assumption that the product nR is small will have to be 
checked a posteriori, when calculations are made for specific instability situations. 

Substituting (41) into (29), (38), (39) and (40) gives the differential equation for 
the first approximation to <D 

( [ ( D  - 1)2 - a 2 1  ( 0 2  - a2) + 2 4  @(O) = 0, (43) 

with the boundary conditions a t  y = 0 

@to)" + $@(0' = 0, (44) 

(45) 

and at  y = --co @(O) = 0 and @@)' = 0. (46) 

Since the right-hand member of (43) vanishes, this is tantamount to neglecting in 
(23) the time rate of change of vorticity. (43) is an ordinary linear fourth-order 
differential equation with constant coefficients; its solutions are of the form 

@?) = exp (qi+ i), 
where the qi's are given by 

(47) 

and 

A =[(1+4a2)2+16a2]f, ~ = t a n - l  ___ 
(1 :L) ' 

i = A C O S ~ ~  = J[A2 + ('2' 4a2)] 

1 9  

q = Asinix  = 

i t  can be shown that the solution of (43) can be written as 
4 

i=1 
@(O) = z k. @(O), 

3 j  

(49) 
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In  order to satisfy the boundary conditions (46), k3 = k, = 0. Therefore we have 

@(O) = k, @y + k ,  @LO), (54) 

which when substituted into (44) and (45) gives 

k,(s2 + a2) + k2(s*2 + a,) = 0,) 

where s = +(1 +[+ iq )  and s* = +(l+[-iq). 

Since k, and k, are non-vanishing, (55 )  requires that 

which is the eigenvalue determinant that describes the instability of the flow. 
Solving (57) for n/R yields 

where s, = *(1+[), S( = 47. (59) 

Further, 5 and 7 are given by (50). From (58) it can be seen that as a --f 0, 
n/R -+ 0; and also n/R = 0 at the cut-off wave number, 

a c ,  = .JW, (60) 

which agrees with (2). The curve of n/Rwsa then has a maximum at a wave- 
number smaller than the cut-off wave number. For sufficiently small wave 
numbers, n/R is independent of W .  

2.5. Limiting form of (58) for a < 1 

For small values of the wave-number a, it  follows, from (49), (50) and (59), that 

A2 = 1+12a2+O(a4),  $9 = 1+4a2+O(a4)  and s: = a2+O(a*). (61) 

Inserting (65) into (62) gives 

n/R = 2a2( 1 - a2/W) [ l -  14a2 + O(a4)]. (62) 

Differentiating (62) with respect to a and setting the result equal to zero, yields 
the critical wave-number ac that will maximize the value nfR, i.e. 

1 f O(a:) 
= 4{2(14+ l /W)>'  

Substituting (63) into (62) gives, up to terms of O(a4), 

where G = 14+ l / W .  
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For small W ,  (62), (63) and (64) give respectively 

nlR = 2a2, ac = J($ W ) ,  nJR = $ W .  (65) 
Thus, when W is small, (60) and (65) determine the important features of the 
amplification exponent; these are summarized in figure 6. 

,- n)R = tW 

log a 

FIGURE 6. Important features of the amplification exponent for small values 
of a and W and exponential viscosity variation in a liquid of inlhite depth. 

For large W ,  a, is of O( I), and no significant simplification of (58) can be made. 
Since for some materials, the case of small a and W may be of considerable 

practical importance, (60) and (65) will be restated, for convenience, in dimen- 

Since for high-performance heat shields, the amplification factor ii has to remain 
small, (67) shows clearly the importance of having large viscosity and surface 
tension, as well as a rapid change of viscosity with distance (i.e. small 8). 

2.6. Limiting form of (58) for  a $ 1 

In  this case it can be shown that if a2/W < 1 and a $ .l, (63) reduces to 

nlR = 1/(2a). (68) 

Finally, (58) is plotted in figure 7, where the Weber number W is a parameter. 
1, (68) agrees with the plot. The critical values, as read from Note that €or a 
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Wave number, a 
FIGURE 7. Amplification exponent for a liquid of infinite depth and exponential viscosity 
variation (nR<l) .  a = 2.rrSIx; m = pQ/pz; r = po/pz;  R = Jgpz@/pz; W = gpLS2/u;  rz = am- 
plification exponent. 

W 
FIGURE 8. Critical wavelength & and amplification exponent nc 

determined from figure 7. 
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figure 7 have been plotted in figure 8, where a comparison is made with (65) for 
small values of W .  Figure 8 could be obtained analytically by maximizing n/R 
with respect to  a in (58). 

3. Instability of a viscous incompressible fluid of finite thickness and 
constant viscosity 

We will now modify the previous analysis so that it may be applied to a class of 
materials that have a definite melting temperature and whose viscosity has 
a weak temperature dependence. I n  this case the viscosity will be assumed to 
remain constant across the liquid layer. 

3.1. Derivation of the eigenvalue determinant 
The present problem differs from the case discussed in $ 2  by the fact that the 
liquid layer has a constant viscosity p, and a finite thickness h. 

The differential equation ( 2 3 )  simplifies to 

with R = pg?wp, 
y = D/h and x = Z/h. 

Instead of (29) we now obtain 

[(D2-a2)2--nR(D2-a2)] @ = 0 (72) 

with the boundary conditions given as before by (38) and (39), while here (40) 
holds at y = - 1 instead of negative infinity; i.e. a t  ij = - h 

@ = 0, @’= 0. (73) 

Although the differential equation is simpler than before, the eigenvalue deter- 
minant here will be more cumbersome due to the boundary condition (73). 

The solution of (72) is given by 

@ = k, e-av + k, e-flu + k3 eau + k4 d u ,  

where ,8 = J(a2+nR). 
(74) 

(75) 

Since k,, k,, k, and k, are non-vanishing, substituting (74) into the boundary 
conditions (38), (39) and (73) yields 

ea 
-uea 

efl e-a 
--pep cx e-OL 

e-fl 

/3 e-1 

[ - p3 + P(nR + 3a2)  - a(nR + 2a2) [/I3 - P(nR + 3a2) [ [a(nR + 2a2) 

n n 

= 0. 

(76) 
10 Fluid Mech. 6 
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This equation can be shown to reduce to 

where y = 2 + Rn/a2. (78 )  

Prior to presenting (77) in graphical form, we will discuss its behaviour for 
some limiting cases. 

3.2. Some limiting forms of the eigenvalue determinant (77) and comparison 
with the liquid layer of semi-infinite depth 

As R it co, (77) reduces to 

n = [a( 1 - a2/ W )  tanh a]*. (79) 

The tanh a dependence in (79) agrees with (6), which was obtained by Chang 
(1  956). Note that for large a, i.e. small x/h, (79) reduces to the case of a liquid 
layer of infinite depth: n = [a( 1 - az/ W)]*. (80) 

For small a, we have from (79) 
2n 
h n = CL, or ?i = - , / (gh) ,  

while for the deep liquid layer 

n = 2/01, or E = 1/(27rg/K). (82) 

From (79) the critical values cannot, in general, be written explicitly since 
transcendental expressions are involved. These can be reduced, for the case of 
small a, to 

nc = ,/caw,, and a, = J(3W, (83) 

(84) 
1 

Ti, = +(ph/cr)ag and E, = -(pg/cr)*, or 

while for the semi-infinite fluid (Bellman & Pennington 1954) the critical values 
are given by 

4 2  

n, = “(*W)13 and a, = ,/(W), (851 

or Ec = ( 2 / 3 ) * ( p / 3 ~ ) 4 g 2  and Or, = 3-4(pg/cr)*. (86) 

3.3. The behviour of the amplijication exponent for aJluid of Jinite thickness 
Figure 9 i s  a plot of (77). The curve for R = 00 coincides with (79) and for small ct 
with (81). 

For small values of a, in the inviscid case (R = m), the closer the wall is to the 
interface, the smaller the amplification exponent; the presence of the wall de- 
creases the amplification of the disturbances. When viscosity is included, the 
wall has yet a more important damping effect, because it forces to zero the 
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zc-component of the disturbance velocity. The larger the viscosity, the stronger 
this effect. It can also be shown, from (77),  that for sufficiently small values of a 

n - a2. (87) 

For large values of a, the wall should have no effect, the results should coincide 
with the semi-infinite fluid (figures 10, 11) ,  and since large a means also high 
spatial frequency, viscosity becomes effective in diminishing the amplification 
rate. 

." 
1 0 - ~  1 0 - ~  1 0 - 2  10-1 1 10 102 

Wave-number, a 

a = 2nh/x; m = pe/pl; r = pg/pl ;  R = JgplhP/pz; W = gplha/b. 
FIGURE 9. Amplification exponent for a liquid of finite depth and constant viscosity. 

For small nR, from figure 9, it seems that 

nlR = @2a2 (88) 

is probably a good approximation. Comparing (88) with the similar expression 
(65)  for the semi-infinite fluid with an exponential variation of viscosity, we 
conclude that if 

h/6 = lo*, (89) 

a disturbance of the same wavelength in each problem, will grow a t  the same rate 
per unit time. The restrictions on (89) are that nR and a < 1. 

10-2 
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4. Instability of a viscous incompressible fluid of semi-infinite depth 
and constant viscosity 

For the sake of completeness, the calculations of Bellman & Pennington (1954) 
for a fluid of semi-infinite depth have been extended, and the results are presented 
in a more convenient form than given by these authors. Here we use dimension- 
less parameters, the characteristic length h, being completely arbitrary. 

- - _ _  - - - - 
_ _ _ _ ~  - -  

- 

- 

- 
1 0 - ~  I I I I 

1 0 - ~  1 0 - ~  10-2 10-1 1 10 102 

Wave-number, CL 

FIGURE 10. Amplification exponent for a liquid of infinite depth and constant viscosity. 
u = 2rh/X; rn = pg/pz; r = pg/pL; R = JgplhE/p,; W =  gpgh2/a; h = arbitraryreferencelength. 

The implicit expression for n in terms of a is 

+4a2nlR = 0, 
- a (' - $)] (' 1 + nR/a2 

and n is given as a function of a in figure 10 where R and W are parameters. 
Given the values of g ,  pl,pcI and G, the freedom in the choice of the reference 
length h allows an adjustment of the values of R and W so that figure 10 can 
always be used for any physical situation. 

Note that when a2/nR < 1, (90) reduces to the inviscid curve of Lamb-Taylor 
given by (3). This, of course, follows since a2/nR < 1 is equivalent to low values of 
viscosity, i.e. inviscid motion. 
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In  order to give an indication of the stabilizing effect of the presence of a wall 
close to the liquid free surface, we can compare figures 9 and 10 for given a, R and 
W ,  by using the same value of h in figure 10 as is used in figure 9. Then, the ratio 
of the n’s for both cases becomes identical to the ratio of the dimensional E’s. The 
decrease in the value of the amplification exponent E ,  due to the finite thickness 
h, can easily be noted, especially for small values of a. 

1, the critical values 
can be obtained from (90) as 

If surface tension is negligible, i.e. W = m, and if nR/a2 

n, = R*/43 and a, = Rf/(32)*, (91) 
or ?ic = 4-f(p/,u)*gf and ;ji, = ( p / , u ) f g ~ / ( 3 2 ) ~ .  t 92) 
Although n,R/az = 4 and not B 1, the agreement of (91) with the results of 
figure 10 is satisfactory. 

From figures 9 and 10 it can be seen that for a given value of R, both curves 
have the same asymptotic behaviour for large values of a, as remarked in Q 3.3. 

5. Summary of the critical quantities for some of the cases considered 
As we have seen, the maximum amplification exponent for a given physical 

situation cannot always be expressed in simple analytical form. However, the 
cases for which this can be done are summarized in table 1, where we present the 
maximum amplification exponent Em, and the wavelength X,, at which it occurs, 
as a function of the dimensional quantities that arise in the problem. 

Note that when surface tension is non-vanishing, it will usually control the 
size of the critical wavelength &. Comparing all the cases in table 1, X c  varies 
within a factor of about 4, i.e. within this factor the critical wavelength is the 
same for all cases. However, the critical amplification rate, which depends on E,, 
is very sensitive to the value of the surface tension coefficient B. This sensitivity 
increases as the fluid is made ‘shallower ’. Note the change in the exponent of v in 
5, when going, in table 1, from cases 1 to 3 and then to 4. The accurate knowledge 
of the surface tension coefficient B, and interface viscositypi, is most important in 
case 4 which is of considerable practical importance for glassy materials which do 
not have a definite melting point. In  this case the importance of having small 
values of 6, so that the growth rate of the disturbances remains small, cannot be 
over -emphasized. 
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6. Effect of variable deceleration during atmospheric entry 
In  the foregoing analysis it has been assumed that the deceleration g, the 

characteristic lengths S or h, and the interface viscosity ,u4, are independent of 
time. During atmospheric re-entry, however, the deceleration increases with time 
to a maximum value that occurs after the peak heat transfer rate point along the 
trajectory has been passed. This variation can be included in the present analysis. 
The dimensionless equation (23) should be rewritten in dimensional form, so that 
it is not complicated by the use of reference quantities that are a function of time. 
If (25) is replaced by 

rl x = @(g) exp [iZZ] exp J E(%) dE, 
0 

(93) 

the previous analysis can be retraced in a similar way, yielding an eigenvalue 
equation for E ( f )  that can then be made dimensionless, using the time-dependent 
quantities; E ( i )  does not depend explicitly on the time, but through g ( i ) ,  S ( f )  or 
h ( f )  and p#), which previously were constants. This extension, therefore, turns 
out to be very simple. 

The amplification ratio will now be given by 

q(t; a)/q(o) = exp J.?i(T, a) dT, (94) 

which replaces (1). 
At any given time i, it  is of interest to find the value of Z that maximizes q/qo at 

that instant. That such a maximum exists is obvious; during the re-entry phase 
when the deceleration increases with time, the maximum amplification will occur 
at wave-numbers shorter than Ec, the reason being that shorter wave-numbers 
are critical a t  an earlier time and therefore have a longer time to grow. Conversely, 
during the part of the trajectory where the deceleration decreases with time, 
longer wave-numbers than E will grow to become the largest. However, during 
this part of the trajectory the heating rates diminish rapidly and the instability 
problem may become of no practical importance in this flight regime. 

The wave-number Z that will maximize q(t; E)/q(G, E ) ,  a t  time t; can be deter- 

0 

mined from 

where Z = 2n/X. For any specific problem, (95) will determine the wavelength 
Am&&) that has the largest amplitude qm&/q(0) at time f. Once Em&) is 
known, (94) could be evaluated, probably only by numerical means, to yield 
7 (WW. 
7. A .numerical example 

Before applying the foregoing results to the behaviour of the surface of a body 
entering the atmosphere, the ablation problem has to be solved. This solution will 
yield the values of g, 6 or h and needed for the computation of the critical 
wavelength Ec and amplification exponent E,, or the maximum quantities Zm&) 
and ? j ( f ) / v ( O ) .  A numerical example follows. 
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The theory for the ablation of glassy materials has recently been developed by 
Bethe & Adams (1958). Using their theory, the liquid layer parameters just 
mentioned were calculated for the stagnation point of a blunt body made of 

E'IWTRE 11. Liquid-layer properties a t  the stagnation point of an ablating Pyrex blunt 
body entering the atmosphere a t  ICBM conditions. go = 980 cm/sec2; R = Jqp,@/p,; 
W = gp,@/a. Entry conditions: altitude, 250,000 ft. ; velocity, 23,000 ft./seC; angle with 
horizontal, 21.8". Ballistic coefficient (mass/C,A) : 2,500 Ib./ft.2. 

pyrex glass entering the atmosphere. The trajectory that we used, calculated by 
Masson & Gazley (1956), was for an ICBM nose cone entering the atmosphere. 
The physical properties of Pyrex that we used are: 

cpl = 0.25 callg OK, k, = 7 x eal/cm see OK, pl = 2.25gm/cm3, 
38,300 17 (g/cm sec), p, = exp - - T("K)  

hv = 2470cal/g, cr = 300dynes/cm, 
where cpl, k,, p ,  and h, denote, respectively, heat capacity, thermal conductivity, 
vapour pressure of the liquid and the heat of vaporization of Pyrex. Figure 11 
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presents the liquid layer properties, g, S and pi as a function of time and flight 
altitude. W and R were computed from these data. It can be seen from figure 8 
that the values of W are sufficiently small so that (65) is valid for the portion of 
the trajectory considered. Note that nJR and R2 can be obtained from figures 8 
and 11, their product satisfying the expression n,R g 1 everywhere along the 
trajectory. This demonstrates that the results of 8 2.4 are directly applicable to 

Altitude x ft. 

Time, t (sec) 
FIGURE 12. Critical amplification factor Ee and wavelength 2, for the unstable stagnation 
point liquid layer of an ablating pyrex blunt body entering the atmosphere at ICBM 
conditions. Entry conditions: altitude, 250,000 ft. ; velocity, 23,000 ft./sec; angle with 
horizontal, 21.8O. Ballistic coefficient (mass/C,A), 2500 Ib./ft.*. 

our case and that we are justified in using the results of figure 8 and (65). The 
values of the critical amplification factor %, and wavelength xc are presented in 
figure 12;t %, increases exponentially with time and then decreases very rapidly 
when the liquid layer essentially ‘freezes’ due to the low heat transfer rates 
encountered after maximum deceleration. Note that the critical wavelength a t  
first decreases, and after peak deceleration starts to increase. 

In  order to decide whether or not the instability is catastrophic (figure 12), it is 
necessary to calculate the lifetime of a liquid particle. The life span of a particle 

+ We have not considered the effects discussed in § 6. 
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begins when it softens, and ends when the particle either flows away from the 
blunt portion of the body (where the deceleration is high), or when it becomes 
vaporized. In  the case of Pyrex, only a small amount vaporizes and lifetimes, 
obtained from the liquid layer calculation, are less than a second for a 1 ft. 
typical body length. This means that, in the case treated here, the amplification 
is negligible during most of the trajectory, and that no liquid will be lost due to 
Lamb-Taylor instability. However, for materials that have a lower viscosity 
than Pyrex, the situation could be critical. Also, a decrease of the ballistic 
coefficient (massldrag coefficient x frontal area) of the entry body increases the 
instability somewhat. 

It should be noted that, although we only calculated the stagnation point 
conditions, the liquid layer is most unstable in a region away from the stagnation 
point when the gaseous boundary layer is turbulent. The reason is that although 
the deceleration normal to the gas-liquid interface diminishes in regions away 
from the stagnation point, the expression d3/pi increases sufficiently so that the 
net effect is to increase the amplification exponent (67) by about 20 %. 

8. Concluding remarks 
We will next make an attempt to describe the appearance of a blunt axially 

symmetric body when a thin layer of its surface melts or softens as it enters the 
atmosphere (figure 2). It is known that in the case of iron or stone meteorites this 
layer is very thin (Maringer, Simcoe, Manning & Jackson 1958). In  the case of 
stone, the viscosity of the melt will probably be high and the interface velocity 
will be small. Consider a layer of melted material in the azimuthal (Z@-plane 
(figures 2 and 13 a).  The high enthalpy gas can be imagined to be flowing normal 
to the page of figure 13a. The deceleration provides a mechanism for producing 
disturbances (figure 1). Liquid from region ( a )  flows to region (b).  Since the 
curvature in the azimuthal plane will just perturb the heat transfer from its 
original value, the heat input stays approximately constant in the azimuthal 
direction. However, since the protective insulating liquid layer is thinner at ( a )  
that at (b) ,  the solid will melt more at (a)  than at (b)  and therefore develop 
disturbances of a characteristic wavelength determined by the liquid (figure 13 c ) .  
It should be noted that a liquid layer, however thin, is sufficient for the above 
described mechanism to produce the azimuthal waves in the solid. 

From the discussion in $6,  prior to reaching peak deceleration along the entry 
trajectory, shorter waves of small amplitude should grow on top of long waves of 
larger amplitude. The converse statement holds after maximum deceleration. 

It should be noted that disturbances in the azimuthal plane will not produce 
any strong shocks in the supersonic flow around the body, and therefore no 
localized high heat transfer regions will occur. 

In  the flow direction, close to the stagnation point, where the liquid velocity 
vanishes, the instability is of the same wavelength as the azimuthal one. Further 
away from the stagnation point, the velocities increase and the deceleration 
normal to the surface decreases. When the product aR* (where R* is the liquid 
Reynolds number based on the interface velocity) is sufficiently large, Feldman 
(1957) showed that this flow may be stable even under deceleration forces. 
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One of the problems which we have not treated is the one when the product aR*, 
just mentioned, is small. However, it  turns out that the flow is stabilized for fairly 
small liquid ve1ocities.t We should also look into the effect of changing one of the 
boundary conditions in our problem; we have assumed that the velocity V ,  in 
the v-direction a t  jj = - co or - h, was zero. In  the case of an ablating body this 

Gas (a )  

Gas 7 Liouid film 

FIGURE 13. Mechanism of production of surface grooves in meteorites due to the liquid 
film and decelerating forces. Note : Flow velocities are normal to the page. 

velocity is non-vanishing and corresponds to the ablation velocity. The effect 
of using a non-vanishing velocity will probably have a small destabilizing effect 
in the exponential viscosity case. The effect will probably be larger in the case 
of a liquid layer of finite thickness and constant viscosity. 

The physical appearance of the surface of some stone meteorites bears out the 
qualitative description just made. In  the case of iron meteorites, due to the low 
viscosity of molten iron, the liquid Reynolds numbers may turn out to be much 
higher than in stony materials, and therefore the liquid layer is hydrodynamically 
unstable in the flow direction. These disturbances will interact with the gas flow 
in the subsonic region, and will produce shocks in the supersonic flow which will 
lead to high local heat transfer rates, and therefore the surface will have, in 
addition to the azimuthal periodicity, a periodicity in the flow direction j j X  
(figure 2). This is demonstrated in the photograph of plate 2, figure 14. Of course, 
stone may possibly, under some conditions, have high liquid Reynolds numbers 
at extremely high flight velocities, and then it would have also the appearance of 
an iron meteorite. 

In  closing, we should emphasize that the analysis presented here is limited to 
small amplitudes. If for a particular case the amplification q/ro turns out to be 

t In fact we know that such must be the case because for R* = 0, the flow is unstable 
due to the Lamb-Taylor mechanism, and for aR* > 0,  and sufficiently small, the flow 
stable. Therefore, there must be a value of aR* > 0 (i.e. low flow velocities) for which the 
Lamb-Taylor instability disappears. 
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large, the problem becomes complicated, since the instability problem is coupled 
to the heat transfer problem; its solution would lead to the total liquid lost due to 
instabilities and heat transfer. 
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